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Abstract. I discuss the role of toy models as theoretical tools for understanding complex systems of inter-
acting agents. I review some concrete examples, in order to illustrate how this approach is able to capture,
though in an admittedly stylized way, the interactions and non-linearities which are responsible for the rich
phenomenology observed in reality. This allows one to interpret the system’s behavior in terms of phase
transitions and critical phenomena.

PACS. 89.65.-s Social and economic systems – 05.70.Fh Phase transitions: general studies – 05.70.Jk
Critical point phenomena – 89.65.Gh Economics; econophysics, financial markets, business and
management

1 Introduction

Physics is an empirically grounded science, so it is no won-
der that empirical studies have dominated the scene of
physicists’ studies in quantitative finance and economics.
Indeed, the abundance of data recently made available
in several disciplines has led to a new type of empirical
science aiming at organizing such information into well
defined statistical/empirical laws — or stylized facts (see
e.g. [1,2]).

The implicit assumption is that such non-trivial laws
are the consequence of interaction between the units of
the system. However, inferring interactions from empiri-
cal data (e.g. from correlations) is a subtle issue. While
physics can draw on the knowledge of microscopic laws
to make such an inference, in socio-economic sciences or
finance things are much more complex1.

On their side, economists have realized the importance
of going beyond effective non-interacting single agent theo-
ries such as the representative agent approach [4], as well
as the need to properly deal with agents’ heterogeneity
and stochastic effects. The most interesting consequence
of interaction in system with many interacting units are
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1 For example, as a corollary of market efficiency arguments,

the presence of predictable patterns in financial time series (e.g.
the well known January effect) signals the absence of traders
exploiting such irregularities and their disappearance likely im-
plies that traders have recognized such patterns and modified
their behavior accordingly. In this case, empirical data on re-
turns can at most say what agents are not doing. Section 2.2
discusses instead a case where the inference of agents’ behavior
is less problematic.

phase transitions2. These occur at points where single
particle theories break down and separate regions with
a qualitatively different collective behavior. The collective
behavior beyond the transition cannot be reduced to that
of simple non-interacting units and its description requires
the introduction of new concepts and quantities (order pa-
rameters). Furthermore, in the strongly interacting phase,
correlations may extend much further than interactions
do3, so that a naive inference of the latter from the for-
mer might be misleading.

In all these respects, theoretical modelling can give a
significant contribution to the development of a funda-
mental theory as well as in guiding empirical research. In-
deed theoretical models makes the relation between inter-
action and measurable collective behavior explicit (even
though not univocal, in general). The experience which
statistical mechanics has accumulated in understanding
how thermal fluctuations and interaction determine dif-
ferent states of matter is very valuable in this respect.
Indeed, the specific principle of physics — e.g. energy con-
servation and maximal entropy — which have clearly no
validity beyond physics, play only a secondary role. As
realized long ago [8], a similar statistical description of
the states of interacting systems is possible even in other
disciplines. Indeed, the relevance of phase transitions as a
consequence of interaction has also been realized by some
economists [6]. However, the point has not been taken fur-
ther than some generalizations of known results on the

2 Not all phenomena undergo phase transitions. An exam-
ple in the recent literature on physics approach to economic
phenomena are the models of wealth dynamics [5].

3 The typical example is the emergence of long-range order
in spin models, where even sites far apart which do not interact
share the same orientation of their spins.
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Ising models to model non-market interactions, and it has
soon after been dismissed [7].

In this paper we shall briefly review a selection — ad-
mittedly strongly biased — of examples of phase tran-
sitions in socio-economic systems and models of finan-
cial markets. Such an endeavor in socio-economic sciences
faces the additional hurdle of dealing with a much more
complex reality than that of physics. The indifference of
statistical laws to microscopic details justifies only partly
the ruthless simplification which models need to make
of reality. Indeed, rather than insisting on their realism,
such toy models are best viewed as stylized realities where
agents interact in well defined environments, capturing
some key elements of the real systems. Only in some cases
this leads to quantitative predictions for real systems. In
all cases however, this approach provides a coherent pic-
ture which helps us organize the way in which we think
about these systems and sheds light on what new phe-
nomena we can expect. For this reason, in what follows
the emphasis will be more on the overall picture and gen-
eral considerations, than on technical details.

2 Critical phenomena in financial markets

Empirical analysis of financial markets data has uncov-
ered non-trivial statistical features which are somewhat
reminiscent of anomalous fluctuations in physics [1]. This
raised the theoretical question of whether such stylized
facts merely reflect the behavior of external factors (e.g.
fundamentals, news arrival process) — as suggested by
a näıve interpretation of market efficiency hypothesis —
or whether they are the signature of a complex internal
dynamics of a system of interacting traders.

To date, such stylized facts have been reproduced with
a varying degree of success in many different ways – most
having little to do with critical phenomena, rather arising
as a consequence of a sort of generic scale invariance [20].
This suggests that stylized facts might not be sufficient to
pin down a specific interaction mechanism. Still, some of
these explanations have a larger theoretical content and
provide a richer picture than others.

2.1 The Minority Game

High frequency fluctuations in returns are naturally re-
lated with speculative trading. This component of a fi-
nancial market has sometimes been described as a soup
of interacting trading strategies, subject to evolutionary
selection, where the profitability of a strategy is not de-
fined a priori, but rather depends on the composition of
the soup [3].

The Minority Game (MG) [9] develops this intuition
in a systematic way, pitting a number of adaptive agents
against each other in the simplified market environment
provided by the minority rule: Without entering into de-
tails (we refer to [10] for a brief account and to [9] for more
details), agents are equipped with a small set of trading
strategies which recommend them one of two actions (e.g.

1 10 100 1000
number of speculators

0

5

H
   

σ2

0

5

10

vo
lu

m
e

−1 0 1

10
−6

10
−4

10
−2

Fig. 1. Behavior of the Minority Game as a function of the
reduced number of speculators ns = Ns/P . Top: volume (num-
ber of active traders). Bottom: predictability H (squares) and
global efficiency σ2 (circles). The parameters of the GCMG
are ε = 0.1, Np = P , S = 1 and NsP = 50 000. Averages were
taken on 200 realizations. The inset shows the distribution of
returns for 200 and 500 speculators (corresponding to the ar-
rows) in numerical simulations (P = 10).

buy or sell) on the basis of some public information. The
optimal choice is that placing the agent in the minority
group and each agent selects one among his/her strate-
gies according to their past performance. If speculators are
also given the possibility of not trading if the game is not
profitable (as in the so-called Grand-Canonical MG [9]),
then the presence of producers, i.e. non-adaptive agents,
becomes crucial in order to have some trading activity4.

The typical behavior of such a market, in terms of trad-
ing volume V , information efficiency (i.e. predictability) H
and volatility σ2, as a function of the (reduced) number
of speculators ns is depicted in Figure 1. The behavior
of H captures the main insight behind information effi-
ciency arguments: A market with few speculators offers
profitable gain opportunities (H > 0) to further specu-
lators. However, as more speculators join the game, the
market becomes more information efficient (i.e. H ↘ ns).
The number of speculators will stabilize when the market
is nearly unpredictable (H ≈ 0).

The inset shows that, precisely in the region where the
market is nearly information efficient the distributions of
returns acquires fat tails. Far from this region, i.e. when
H > 0, returns are normally distributed. This implies that
market (marginal) efficiency and anomalous fluctuations
are two sides of the same coin, as they occur in the same
region. A detailed study shows that indeed such fluctu-
ations are due to finite size effects and disappear in the
limit of markets with an infinite number of agents.

The MG also sheds light on the nature of the interac-
tions between different types of traders in market ecolo-
gies and provides a number of surprising results. One is
that the collective properties are largely independent of

4 Interestingly, the presence of these two types of traders, a
theoretical necessity in MG, has been confirmed empirically in
the Spanish stock market [11].
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whether the information which agents process is endoge-
nously generated by the market process itself or whether
it has an exogenous origin (depending e.g. on sun-spots
activity) [12]. Another one is that, in efficient markets
(H = 0) volatility (σ2) decreases with the degree of ran-
domness in agents’ decision rule. Such an inverse relation
between macroscopic fluctuations and microscopic noise is
counter-intuitive in statistical physics. Equally striking is
the fact that macroscopic fluctuations are independent of
microscopic noise when H > 0 (see Sects. 3.3.5 and 3.4
of [9]).

But probably the most remarkable lesson of the MG is
that concerning the role of the apparently innocent price-
taking approximation on which agents’ behavior — as well
as most of financial engineering5 — relies (see Chaps. 4
and 5 of [9]). In brief, market prices clearly depend on
the actions of traders. However each single trader might
regard himself as negligible with respect to “the market”.
This leads trader to take prices as fixed, neglecting their
impact on them — the price-taking approximation. The
MG reveals that this seemingly innocuous approximation
leads agent to overestimate the worth of strategies they
are not currently playing, and it accumulates over time
causing agents to abandon optimal strategies for subopti-
mal ones. This strategy switching is what causes market
volatility. Conversely, even approximately accounting for
the market impact of their strategies, agents can collec-
tively reduce significantly the market’s volatility.

2.2 Multi-asset markets

Going from single asset to multi-asset markets, the rel-
evant question becomes that of explaining the origin of
financial correlations across stocks, which have been ob-
served in empirical studies. The structure of correlations
has been analyzed with several methods [16,17] and, in
terms of its spectral decomposition, it is composed of three
components: 1) noise background, which accounts for the
bulk of the distribution, 2) economic correlations, which
manifests in the few eigenvalues which leak out of the
noise background and 3) the largest eigenvalue Λ — cor-
responding to the so-called market mode — which is well
separated from the other ones as it accounts for a signifi-
cant part of the correlations. The market mode describes
the co-movement of stocks and, as shown in Figure 2a,
exhibits a non-trivial dynamical behavior.

It is reasonable to assume that the properties of smaller
eigenvalues are due to exogenous economic factors or to

5 The relevance of market impact for large investors, as well
as strategies for minimizing it by splitting large orders, has
been studied e.g. in reference [13]. The resulting effects have
also been claimed to be relevant to explain fat tails in the dis-
tribution of returns [14] and long term statistical dependencies
in absolute returns [15]. We refer here to classical approaches,
such as option pricing and portfolio theory where the investor
is assumed small. Our point is that, even when the impact is
negligible from the single agent point of view [13], the fact that
many agents neglect it has sizeable consequences on market’s
dynamics.
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Fig. 2. Maximum eigenvalue of the exponentially averaged cor-
relation matrix (over a typical timescale of approximately two
months) as a function of time for the Toronto Stock exchange
(top; data form Yahoo finance) and from numerical simulations
of the phenomenological model of reference [18] (bottom).

noise trading. The key question is then whether the wild
fluctuations in Λ of Figure 2 are due to exogenous factors
or to the internal non-linear dynamics of the market. This
issue has been addressed in reference [18], starting from
the following considerations: one important function of fi-
nancial markets is that it allows traders to “dump” risk
into the market by diversifying their investment across
stocks, as postulated by portfolio theory [19]. This pro-
duces a flow of investment which is correlated across as-
sets, with a sizeable component on the direction of the
optimal portfolio. This, in turn, is likely to contribute to
the correlation of returns, on which portfolio optimization
depends. Such a feedback on financial correlations is cap-
tured by a symbolic equation for the covariance matrix Ĉ:

Ĉ = Ω̂ + B̂ + F̂
(
Ĉ

)
. (1)

The idea is that asset correlations result from three dif-
ferent sources, corresponding to the three different com-
ponents discussed above: 1) noise (including speculative)
trading, which accounts for Ω̂; 2) fundamental trading,
based on economics, represented by B̂ and 3) the term F̂
due to investment in risk minimization strategies, which
itself depends on the financial correlations Ĉ. Equation (1)
depicts how “bare” economic correlations are dressed by
the effect of financial trading and can be formalized in a
simple phenomenological closed model for the joint evo-
lution of returns and correlations [18]. This model pre-
dicts that, when the strength of the component of opti-
mal portfolio investment increases, the market approaches
a dynamic instability. It is precisely close to this point that
the model reproduces time series of correlations with quite
realistic properties (see Fig. 2b). Such a conclusion is con-
firmed by maximum likelihood estimation of the model’s
parameter on real market data.

The picture which this model offers is that of a mar-
ket where risk minimization strategies contribute to the
correlations they are trying to elude. The stronger the in-
vestment activity on these strategies, the more market’s
correlations grow, up to a point where the market enter
a dynamically unstable phase. Interestingly, close to the
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phase transition the model develops anomalous fluctua-
tions also in returns, which acquire a fat tailed distribu-
tion.

Within this simplified picture, real markets happen to
operate close to the critical point corresponding to the
dynamic instability. This is likely not a coincidence: indeed
as far as a markets is far from the critical point, it offers
stable correlations which allow traders to reliably use risk
minimization strategies. However, as this opportunity is
exploited more and more, the market approaches a point
of infinite susceptibility where correlations become more
and more unstable thus deterring further trading on these
strategies.

2.3 Self-induced criticality?

Both the Minority Game and the phenomenological model
of correlated assets relate the emergence of non-trivial
fluctuations in financial markets to the critical phenom-
ena taking place in the proximity of a phase transition.
In both cases, a simple argument suggests that markets
spontaneously evolve towards the critical state: as long as
the density of traders is small enough, the market offers re-
liable opportunities (of speculation or risk minimization)
which may attract further investors. Newcomers, however,
make these opportunities less reliable and the market less
attractive. Three points are worth noticing: (i) both cases
show the fallacy of the price taking assumption on which
most of financial engineering is based; (ii) the occurrence
of an instability or critical point as the density of inter-
actions increases is of the same nature of that discussed
by May long ago [22] for complex systems in general and
ecosystems in particular; and (iii) this scenario is rem-
iniscent of Self-Organized Criticality (SOC) [21]. As in
SOC, the presence of two different processes acting at
well separated time-scales is essential. However, there are
two important conceptual differences: first the concept of
avalanches does not play a significant role and second the
tendency to converge to the critical point is not due to ex-
ternal driving but to endogenous forces: The agents them-
selves, responding to incentives, drive the system close to
the critical point. Under such endogenous forces, the den-
sity of interactions increases

In order to avoid confusion, it might be preferable to
adopt a term different from Self-Organized Criticality in
the present context.

We remark that a similar arguments, at the level of the
economy for general equilibrium models, suggest that en-
dogenous technological innovation should drive the econ-
omy close to a critical point [23]. The SOC paradigm has
instead been advocated for model of bankruptcies [24,25].

3 Phase transitions in socio-economic
systems

There are plenty of examples of statistical phenomena
showing some sort of regularity, in the history of civiliza-
tion. Of course modelling such phenomena is an highly

speculative enterprise. For example, wars have come in
all possible sizes during recent human history, caus-
ing from few hundreds to tens of millions causalities.
Richardson [26] has observed in 1950 that the number
of wars with more than N causalities are inversely pro-
portional to the square root of N . Of course each war
has its history of rights and wrongs. But such a regular-
ity cannot be an accident and its similarity with critical
branching processes or SOC is at least suggestive. Like-
wise, the cultural explosion which took place 40 000 years
ago has been related to discontinuities which arise in sim-
ple model for the evolution of language in a population of
interacting individuals [27]. The process by which a popu-
lation converges to a set of agreed concepts has been also
related to coarsening phenomena [28] and simple models
of cultural diffusion exhibit phase transitions with a rich
phenomenology [29].

3.1 The rise and fall of “liquid” societies

There is a growing consensus among social scientists on
the relevance of the network dimension for social phenom-
ena. Not only they are “embedded” in the underlying so-
cial network [30] but, reciprocally, the social network itself
is largely shaped by the social processes taking place on
it.

If we imagine links to carry profitable socio-economic
interactions for the partners, one of the key function the
network provides is that of preserving itself, helping agents
to keep a dense network of interactions even in face of
changing or volatile conditions. This intuition has been
formalized recently in a class of stylized models [31,32]
where a set of agents — be they individuals or organiza-
tions — establish bilateral interactions (links) when prof-
itable. The favorable circumstances that led at some point
to the formation of a particular link may later on deterio-
rate, causing that link’s removal. Hence volatility is a key
disruptive element in the dynamics. On the other hand,
the formation of new links may be constrained by the net-
work architecture in many ways. For example, agents may
rely on their social contacts to search further profitable
opportunities and establish new links [31]. Alternatively,
the profitability of a link might crucially depend on the
similarity or proximity of the two partners (in terms of lan-
guage, technological standards etc.) [32]. In both cases, the
density of links in the network may display a non-linear
behavior such as that displayed in Figure 3: as the net-
working effort — i.e. the rate at which agents try to form
new links — increases from low values, the density of links
initially does not increase substantially. Indeed, as long as
the social network is sparse it does not provide either in-
formation on new possible partners nor does it achieves
in establishing coordination or similarity across society.
Beyond a critical threshold, however, a dense network of
interactions with a giant component spanning a large frac-
tion of the population emerges suddenly. Now the network
enhances both search and coordination so that agents can
efficiently replace obsolete links, keeping a high density of
interactions. Such a network is resilient, because even if
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Fig. 3. Network density (average degree) as a function of the
ratio between networking effort and volatility (ξ/λ) for the
model of reference [31] (η/λ = 0.01).

the networking effort of agents decreases or if volatility
increases, the society does not revert to a sparse network
state but remains in a densely connected one.

This suggests that the dynamics of social network may
feature sharp transition, resilience and phase coexistence
whenever it provides functions which have a sizeable posi-
tive impact on the ability of agents to keep connected or to
form new links. Such a picture is confirmed by anecdotic
empirical evidence on the non-linear behavior of socio-
economic networks in phenomena ranging from the spread
of crime to the rise of industrial districts (see [32]).

4 Outlook

One would be tempted to say that socio-economic phe-
nomena are currently changing at a rate which is much
faster than that at which we understand things. For ex-
ample, Nature has been there since ever, but it has taken
centuries to develop a reasonable understanding of little
parts of it. Many of the things which are traded nowadays
in financial markets did not exist few decades ago, not
to speak of internet communities. In addition, we face a
situation in which the density and range of interactions
are steadily increasing, thus making theoretical concepts
based on effective non-interacting theories inadequate.

The emphasis which empirical analysis has acquired re-
cently is a natural response to the need of organizing our
description of complex phenomena. It is not clear whether
computational (e.g. agent based) approaches, which have
gained so much momentum recently, are contributing in
the same direction. Computational approaches have been
very useful in physics because the knowledge of micro-
scopic laws constrains theoretical modelling in extremely
controlled ways. This is almost never possible for socio-
economic systems.

Phenomenological or toy models, which has been so
useful in unveiling how interaction and thermal fluctua-
tions compete in statistical physics, might be very valu-
able. As in the case of the Minority Game, these models
open a wider window on the behavior of complex systems

making it possible to locate “point-wise” empirical find-
ings in a broader theoretical landscape. Even though styl-
ized, such a reference, well controlled theoretical frame-
work helps us shape our way of thinking about strongly
interacting socio-economic systems and it may provide
sources of inspiration for mining empirical data in search
for fundamental theories and organizing principles.
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